Soldering with induction can improve your soldering process without flame or irons. Soldering with induction heating focuses energy only in your part. Solder your materials in a repeatable, precise flameless process.
The solder formed a relatively uniform domed seal around the fiber despite the asymmetry of the open C coil. It took under 10 seconds to heat the part to soldering temperature
It takes under 10 seconds to heat four copper strips concurrently, resulting in a boost in throughput for the client. Induction is a highly repeatable process that heats just the area of the copper strip that requires it.
Heating with induction required under 10 seconds and is a highly repeatable process; the customer can expect the same result every time with only the portion of the part requiring heating being heated. There is no open flame with induction, which makes it a safer method of heating than torch heating.
Induction proved faster than the client’s previous heating torch process. It is also is a repeatable heating process, so the client gets superior results and is more energy efficient than torch heating. Induction doesn’t have an open flame and introduces less heat into the work environment than a torch
Induction’s precision heating ensures repeatable results and less damage to surrounding substrates while demonstrating reduced heat loss and lower energy usage...
For this grounding lug soldering application, induction delivers consistent result is achieved each time and does not present a flame, so it helps create a safer, cooler working environment than other methods
The heating process is completed within 15 seconds with consistent results without the use of flame, creating a safer, cooler working environment...
The heating process was completed within 12 seconds, faster than the client’s gas torch and more reliably. Without flame, induction helps create a safer, cooler working environment.
High intensity heat must be applied to the joint area for this application so that thermal conduction of the copper does not sink away the heat delivered from the induction process.
High intensity heat must be applied to the joint area for this application so that thermal conduction of the copper does not sink away the heat delivered from the induction process.